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Circumferential Local Ternary Pattern: New and
Efficient Feature Descriptors for Anti-Counterfeiting

Pattern Identification
Zhaohui Zheng, Bichao Xu , Jianping Ju, Zhongyuan Guo, Changhui You, Qiang Lei , and Qiang Zhang

Abstract— An important aspect of querying whether a prod-
uct is likely to be forged is to identify its anti-counterfeiting
label. However, the use of image processing technology for
label-specific texture analysis to quickly and effectively identify
the anti-counterfeiting label has been widely studied. Aiming at
the defects of the local binary pattern (LBP) and its variants in
texture identification, this paper proposes a new texture model
for anti-counterfeiting identification, that is, the circular local
ternary pattern (CLTP). The highlight of our technology is that
it extracts the effective local texture descriptors by using the
random features of inkjet printing. This allows for the technology
to not only resist the interference of noise and illumination
in images of anti-counterfeiting patterns but also to encode
and reorganize the fine linear shape structure. Specifically, this
paper extracts the CLTP texture feature in the corresponding
key areas and forms the final feature histogram vector for
comparison through the one-to-one correspondence between the
sample image and the inspected image of anti-counterfeiting
pattern. Experiments prove that our method not only has high
discrimination, stability and effectiveness but also provides a
convenient and practical idea for anti-counterfeiting technology.

Index Terms— Circumferential local ternary pattern (CLTP),
feature extraction, anti-counterfeiting pattern, key areas.

I. INTRODUCTION

W ITH the rapid development of the economy and the
popularity of Internet consumption, the counterfeiting,

forgery and piracy of products are rampant. The emergence of
low-cost scanning equipment, high-quality printers and good
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color copiers makes it easier to counterfeit and forge prod-
ucts, especially in less developed and developing countries.
The commonly used anti-counterfeiting method in practice
is to add special materials to synthesize anti-counterfeiting
patterns [1] as additional security features. However, the costs
of these materials are high, and there is a need to rely on
human eyes or instruments for identification to achieve high
anti-counterfeiting performance, thus, current technology is
not sufficiently automated. Therefore, a meaningful research
area is digital imaging technology use to identify the textural
uniqueness of anti-counterfeiting patterns in spray printing
without adding additional security materials. According to
the random texture feature introduced by the tiny defects
in the mechanical parts and the random diffusion of ink
in the printing process, the method ensures the uniqueness
of the texture in each printing pattern, which makes the
method very useful for the automatic anti-counterfeiting iden-
tification of digital images when one item corresponds to
another image.

The rapid development of smart phones has made it rela-
tively easy to obtain high-quality digital images. Using digital
imaging technology for the anti-counterfeiting identification
of digital images is a fast and convenient method with certain
reliability. To meet the needs of the public for convenient anti-
counterfeiting recognition, we have proposed the statistical
difference in key image regions algorithm (SDKR) [2] based
on structural difference in our previous research. It uses similar
shape features and is easily affected by binarization. In order
to ensure the robust extraction of useful texture features under
various interference conditions, this paper proposes a novel
and robust texture feature extraction method, namely, the
circular local ternary pattern (CLTP), which is used to capture
the differences of the key details of anti-counterfeiting patterns
with strong robustness for the images collected by mobile
imaging devices. The main contributions of this paper are as
follows:

(i) Based on the analysis of the uniqueness of the anti-
counterfeiting texture, we design a new descriptor similar to
the LBP: CLTP. The CLTP is more effective for image texture
analysis than the traditional LBP and its improved descriptor.
It has a stronger identification ability, especially when one
item corresponds to one image.

(ii) We introduce the concepts of falling, rising and
stable-state structural patterns describing the local fluctuation
trend and defining the threshold function.
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(iii) We further extend the ternary CLTP to the binary rising
pattern (RCLTP) and the binary falling pattern (FCLTP) and
combine the statistical histogram into a joint histogram to
ensure that the texture description ability should be more
robust and stable.

II. REVIEW OF EXISTING METHODS

Due to the small geometric distortion and noise in the print-
ing process, Gebhardt et al. [3] proposed a belonging printing
system to distinguish document images by using the difference
of the edge roughness, which is used to distinguish laser
printing and inkjet printing. However, this method is easily
affected by the imaging equipment and ambient illumination,
and training data are simultaneously needed. Shang et al. [4]
proposed using the character edge roughness, noise content
and other features for character level identification on three
equipment types, and the method achieved an average accu-
racy of more than 90%. Although the identification type of
this method has been extended, it is still affected by illu-
mination. Umadevi et al. [5] proposed using the expectation
maximization (EM) algorithm to distinguish the type of printer
that printed a document. The characters were divided into
character areas, background areas and noise areas, and then
the printers of the documents were classified by iterative
calculation. This method can only be used for basic print
type recognition. Akao et al. [6] identified the source of an
inkjet printer through the distance feature of gear indentation,
which is more obvious for paper just printed than for paper
that is printed and stored. Elkasrawi and Shafait [7] proposed a
method to obtain statistical features from the noise residuals of
each character using the unique noise generated by the printer.
However, this method is easily affected by the binarization
effect when extracting noise. Wu et al. [8] proposed a printer
model composed of the distance and angle of halftone points
and used the Euclidean distance and k-means to identify
printer attributes. This method is easily affected by illumina-
tion when extracting halftone points, so it is necessary to use
a scanner to collect images for recognition. The research on
face anti-spoofing attack detection is also of strong reference.
Yu et al. [9] proposed a novel frame level FAS method
based on Central Difference Convolution (CDC), which is
able to capture intrinsic detailed patterns via aggregating both
intensity and gradient information. And the Central Difference
Convolutional Network (CDCN) built with CDC, is able to
provide more robust modeling capacity than its counterpart
built with vanilla convolution. Parkin et al. [10] proposed a
new anti-spoofing network architecture that takes advantage of
multi-modal image data and aggregates intra-channel features
at multiple network layers. They also transfer strong facial
features learned for face recognition and show their benefits for
detecting spoofing attacks. Although the deep learning method
has a good effect on face anti-spoofing attack detection, the
one-to-one authenticity identification needs further research.

The texture of an image can sufficiently reflect the internal
details. In addition, the texture descriptor and machine learning
algorithm can be combined to identify the discrimination
pattern, which can be further associated with the uniqueness

of printing. Therefore, the research and development of texture
based on identification technology has become a research field
of great interest in recent years. Nguyen et al. [11] proposed
using texture patterns on a microscopic scale to model the
micron scanning of printed documents via a binary response
model. The parameters of the model depend on the location
and shape of points, and the maximum likelihood recognition
algorithm is used for authentication. The system needs to use
high resolution scanning to obtain micron scanning. Kim and
Lee [12] used the halftone mode for laser printer recognition.
A set of 15 halftone texture features are extracted by the
discrete Fourier transform, and the classifier is trained by a
support vector machine. Then, in [13], Kim and Lee used
the curvelet transformation and correlation-based attributes
to expand the method, but their method is only used for
color laser printer recognition. Zhou et al. [14] proposed to
compute synthetic printer textures from stable small areas
within letters. This method classifies 240 characters printed
by 12 printers from 10 brands with an average classification
accuracy of 96.67%. However, the texture details used in this
system cannot be displayed by ordinary scanners without a
dedicated, complex and possibly expensive scanning device.
Ferreira et al. [15] used a multidimensional and multiscale
gray level co-occurrence matrix (GLCM) and convolutional
texture gradient filter (CTGF) as feature descriptors of docu-
ments. In [16], the authors proposed training based on a convo-
lutional neural network (CNN) and selected three different rep-
resentations for input data: raw data, the median filter residual,
the average filter residual. However, they only used the letters
“e” and “a” in their papers, letters other than “e” and “a” are
not very accurate, and a large number of training pictures need
to be prepared in advance. Navarro et al. [17] constructed a
CTGF map algorithm based on CTGF. This method needs
the same scanning method to obtain the document image
and can only process the trained characters. Tsai et al. [18]
combined the discrete wavelet transform (DWT) and gray
level co-occurrence matrix (GLCM) to calculate 12 discrete
wavelet transform features and 22 gray level co-occurrence
matrix features from each corresponding character and used
the support vector machine to train and classify the features.
In [19], the authors also used a spatial filter, Gabor filter and
Wiener filter to calculate more features for classification, but
the method only analyzed the scanned images of a laser printer.
Sharad et al. [20] proposed local texture properties (LTrPs)
using a classifier to classify all printed letters. In [21], the
authors also introduced a new printer specific local texture
descriptor (PSLTD) to capture the texture on a scanned image
of printed documents. The dimension of the texture features
proposed by Sharad is greatly increased compared with the
LBP. This makes the descriptor convenient for subsequent
training, but it is not suitable for small sample authenticity
identification.

Chen et al. [22] proposed an authentication scheme with a
mobile imaging device for a 2D barcode. The authentication
features include the DFT-based features in frequency domain
and the customized LBP-based features in spatial domain.
Picard et al. [23] presented a system based on integrating
copy detection patterns into QR Codes. Li [24] proposed
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an image texture calculation method based on the discrete
cosine transform (DCT) feature for the identification of
anti-counterfeiting label patterns. The calculated DCT feature
vector was used as the texture anti-counterfeiting label by com-
bining it with digital anti-counterfeiting technology. Finally,
the authenticity of the image was identified by calculating
the distance between the texture anti-counterfeiting labels.
Zhang [25] evaluated the discrete Fourier transform (DFT),
the DCT and the texture feature calculation methods com-
bined with the DFT and DCT and verified the reliability and
feasibility of the three methods in the automatic identification
algorithm of real anti-counterfeiting labels. In spite of the
noise, scaling, rotation and other issues in their experiments,
there is no analysis of whether the main factors such as the
brightness and contrast ratio affect the identification effect.
Although the use of texture classification and recognition has
made some good progress, most of the fine texture acquisition
methods discussed so far are designed for scanners and special
acquisition devices. Therefore, it is still a challenge to choose
an appropriate algorithm for the images captured by ordinary
mobile devices. For this reason, we have proposed a new
texture model for anti-counterfeiting identification. With the
purpose is encoding and reorganizing the fine linear shape
structure from the images which are captured by ordinary
mobile devices.

The structure of the remainder of this paper is as follows:
the section III briefly introduces the traditional LBP and its
variants, the section IV describes the details of the CLTP
feature descriptor proposed herein, and the section V illus-
trates our anti-counterfeiting pattern identification system. The
section VI depicts the comprehensive experimental results and
comparative evaluation. The section VII summarizes the paper
and proposes some future research directions.

III. TRADITIONAL LOCAL BINARY PATTERN AND ITS

IMPROVEMENT

A. Local Binary Pattern

The traditional local binary pattern (LBP) [26] compares
the gray value of the central pixel with the gray value of its
3×3 square neighborhood and threshold. The obtained value is
represented by a binary value (0 or 1), forming an 8-bit binary
number and converting it into decimal number. Once the LBP
value of each pixel is obtained, a histogram is established to
represent the texture image. The LBP descriptor is shown in
Fig.1(b). If the gray value of a central pixel in image I is given
in a 3×3 square neighborhood, the descriptor of operator LBP
is defined as follows:

fL B P(pc) =
M−1∑
i=0

ψ(pi , pc) ∗ 2i (1)

where pi represents the gray value of the square neighborhood
pixels of the center pixel pi , and M corresponds to the number
of square neighborhood pixels (M = 8). ψ(.) is the unit step
function:

ψ(x, y) =
{

1 x ≥ y

0 x < y
(2)

Fig. 1. (a) spatial arrangement of 3×3 grayscale templates, (b) layout of
LBP descriptors, (c) single loop layout of BGC1, (d) double loop layout of
BGC2 and (e) triple loop layout of BGC3.

It is easy to find that the original LBP does not have
rotation invariance, for the single comparison size is easy to be
affected by noise, and the quantization steps can not reflect the
specific gray difference, resulting in the loss of local texture
information.

B. Binary Gradient Contours

The binary gradient contours BGC1, BGC2 and BGC3 are
proposed to reflect the relationship between the neighborhoods
of the central pixel [27]. They are pairwise comparisons of the
adjacent pixels selected in clockwise order around the 3×3
neighborhood of the central pixel by using some predeter-
mined routes. As shown in Fig.1(c-e), the routes of a single
loop, double loop and triple loop used by the BGC1, BGC2
and BGC3 descriptors, respectively are shown. The descriptors
fBGC1(pc), fBGC2(pc) and fBGC3(pc) of the BGC1, BGC2
and BGC3 operators are defined as follows:

fBGC1(pc) =
M−1∑
i=0

ψ
(

pi , p(i+1)mod M

) ∗ 2i − 1 (3)

fBGC2(pc) = (24 − 1)

M
2 −1∑
i=0

ψ
(

p2i , p(2i+2)mod M

) ∗ 2i

+
M
2 −1∑
i=0

ψ
(

p2i+1, p(2i+3)mod M

) ∗ 2i − 24 (4)

fBGC3(pc) =
M−1∑
i=0

ψ
(

p3i , p3(i+1)mod M

) ∗ 2i − 1 (5)

C. Local Ternary Pattern

A binary gradient contour is forced to distinguish between
binary values for the texture with no significant difference, thus
not meeting the requirements of the real texture. Therefore, the
local ternary pattern (LTP) [28] solves the above problem by
dividing the gray difference into three levels using the width
area. For the unit step function of LBP ψ(.), the LTP modified
the pattern as follows:

ψ(x, y) =

⎧⎪⎨
⎪⎩

1 x − y ≥ T

0 |x − y| < T

−1 x − y ≤ −T

(6)

where the threshold T controls the transition width to distin-
guish three levels. The LTP ensures that the change of the gray
value can be ignored in a certain range.
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Fig. 2. The layout structure of the CLTP descriptor.

IV. CIRCUMFERENTIAL LOCAL TERNARY PATTERN

TEXTURE DESCRIPTOR (CLTP)

Inspired by the above operators and considering that
the ink unevenness or divergence on the printed page of
an anti-counterfeiting pattern is the unique attribute of a
printer, this paper proposes a circumferential local ternary
pattern (CLTP) with structural difference to improve the recog-
nition ability of the local texture feature.

A. Circumferential Ternary Structure

The LBP operator completely ignores the difference of the
neighborhood pixels around the center pixel because it is
based on the binary comparison between the center pixel and
a neighborhood pixel. While the BGC1 operator is based on
the binary pixel comparison of the adjacent elements in the
neighborhood of the central pixel, it completely ignores the
center pixel with discrimination information. The proposed
method is based on the comparison between the center
pixel and the adjacent elements in the square neighborhood,
ensuring that both the center pixel and the neighborhood pixel
can be considered, improving the robustness, discrimination
and applicability of the texture feature extraction operator.
As shown in Fig.2, each path in the 3×3 window in the image
is composed of a central pixel and two adjacent elements
in its neighborhood in a clockwise order. Therefore, each
window has 8 paths in total, so the pixel set in the path is
defined as {[pc, pi , pi−1],∀i ∈ [1, 7], (i = 0− > i − 1 = 7)},
and the corresponding pixel group of each path
is [pc, p7, p6], [pc, p6, p5], [pc, p5, p4], [pc, p4, p3],
[pc, p3, p2], [pc, p2, p1], [pc, p1, p0], [pc, p0, p7]

The difference of the gray values of the pixels measured by
the binary value is easily affected by noise, and the difference
of similar gray values is forced to be distinguished; therefore,
this does not meet the requirements of real anti-counterfeiting
pattern textures. Therefore, this paper adopts the ternary value
pattern (see equations (6)) to handle the difference of similar
gray values ψ(pi−1, pi ).

We conducted ablation study for better illustrating the
strong competitiveness of CLTP. Table I shows the maximum
number of models that can be represented by each operator.
LBP and BGC can describe 28 models, but their focus is
different. LTP can describe 38 models with better performance
than LBP and BGC, and can greatly reduce the impact of
noise. CLTP can describe 316 models, which considers the

TABLE I

THE MODEL NUMBER OF TEXTURE OPERATOR

difference between central pixels and neighborhood pixels,
and better describes the subtle texture features in authenticity
identification. In order to reduce the dimension of CLTP and
the influence of external factors (such as illumination, contrast,
etc), we will use the microstructure with falling, rising and
stable state to represent the local change characteristics of the
image.

B. The Microstructure With Falling, Rising and Stable State

This paper defines three types of structures, falling, rising
and stable states, for the comparison between three pixels
and to accurately describe the local fluctuation trend of an
image. Let [pc, pi−1, pi ] be a set of triples in an image.
If the pixel pi satisfies the conditions: (ψ(pi−1, pi) = 1
and ψ(pi , pc) = 1), (ψ(pi−1, pi ) = 1 and ψ(pi , pc) =
0) or (ψ(pi−1, pi ) = 0 and ψ(pi , pc) = 1), then the
triple [pc, pi−1, pi ] is a rising structure. If the pixel satisfies
the conditions (ψ(pi−1, pi ) = −1 and ψ(pi , pc) = −1),
(ψ(pi−1, pi) = −1 and ψ(pi , pc) = 0) or (ψ(pi−1, pi ) = 0
and ψ(pi , pc) = −1), then the triple [pc, pi−1, pi ] is a falling
structure. If the pixel satisfies the conditions (ψ(pi−1, pi ) = 0
and ψ(pi , pc) = 0), (ψ(pi−1, pi ) = 1 and ψ(pi , pc) = −1)
or (ψ(pi−1, pi ) = −1 and ψ(pi , pc) = 1), then the triple
[pc, pi−1, pi ] is a stable structure. Fig.3 displays the images
of the ternary structure of rising, falling and stable states.

The ternary threshold function υ(.) of rising, falling and
stable states is defined based on the concepts of falling, rising
and stable structures as follows:
υ(pc, pi−1, pi )

= ψ(pi−1, pi ) +©ψ(pi , pc)

=

⎧⎪⎨
⎪⎩

1 pi−1 − pi ≥ T

0 |pi−1 − pi | < T

−1 pi−1 − pi ≤ −T

+©

⎧⎪⎨
⎪⎩

1 pi − pc ≥ T

0 |pi − pc| < T

−1 pi − pc ≤ −T

=

⎧⎪⎨
⎪⎩

1 ψ(pi−1, pi )+ ψ(pi , pc) > 0

0 ψ(pi−1, pi )+ ψ(pi , pc) = 0

−1 ψ(pi−1, pi )+ ψ(pi , pc) < 0

(7)

where the threshold T is set according to the experience value
and the degree of recognition of the gray level (In order to
improve the degree of recognition, this paper sets T=2). When
υ(.) = 1, it is a rising structure, when υ(.) = −1, it is a falling
structure, and when υ(.) = 0, it is a stable structure.

Fig.4 depicts the calculation of the eigenvalues of the LBP,
BGC1, BGC2, BGC3, LTP and CLTP operators on three dif-
ferent sub images (a), (b) and (c). The results of LBP, BGC1,
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Fig. 3. The corresponding ternary structures of falling, rising and stable states in the 3×3 gray level sub-image.

BGC2 and BGC3 in images (a) and (b) are the same, and
their differences cannot be distinguished. Although the LTP
can distinguish images (a) and (b), the results in images (b) and
(c) are the same. However, the CLTP operator introduced in
this paper can well distinguish images (a), (b) and (c).

We can replace −1 of the initial CLTP value with 2 to
ensure the rotation invariance of the CLTP. Then, we rotate
the circle neighborhood continuously to get a series of CLTP
values and take the minimum value as the CLTP value of
the neighborhood. A multiscale problem can be realized by
the size of radius and the number of sampling points in the
neighborhood. Because the CLTP in this paper mainly aims at
identifying anti-counterfeiting patterns, simple preprocessing,
such as illumination adjustment, registration, etc., will be
conducted in the collection stage of anti-counterfeiting patters;
therefore, it is not necessary to consider rotation and multiscale
problems.

C. Rising and Falling Features

Each ternary pattern of the CLTP is divided into the eigen-
values of the rising pattern RCLTP and falling pattern FCLTP
to fully display the texture fluctuation and express it in simple
binary form. The corresponding ternary threshold function
υ(.) can be divided into binary threshold functions rυ(.) and
dυ(.), as is shown in Fig.5. Then, they are regarded as two
independent channels of the CLTP descriptor, their respective
histograms and similarity measures (L2 norm distance) are
calculated, and finally the scores of the two similarities are
fused by using simple union rules. The functions rυ(.) and
dυ(.) are defined as follows:

rυ(pc, pi−1, pi ) =
{

1 υ(pc, pi−1, pi ) = 1

0 υ(pc, pi−1, pi ) ≤ 0
(8)

dυ(pc, pi−1, pi ) =
{

1 υ(pc, pi−1, pi) = −1

0 υ(pc, pi−1, pi) ≥ 0
(9)

The rotation and scaling problem does not need to be
considered as the registration correction has been done before
the texture feature extraction of the anti-counterfeiting pattern.
Therefore, the two descriptors fRC LT P (pc) and fFC LT P(pc)
decomposed by the CLTP operator are directly obtained by
using the kernel functions rυ(.) and dυ(.).

fRC LT P(pc) =
M−1∑
i=0

rυ(pc, pi−1, pi ) ∗ 2i (10)

fFC LT P(pc) =
M−1∑
i=0

dυ(pc, pi−1, pi) ∗ 2i (11)

We compute the histograms of the RCLTP and FCLTP
descriptors separately, and the histograms of the RCLTP and
FCLTP descriptors are combined to form the histograms of
the CLTP descriptors. This hybrid texture description model
has a better texture analysis ability than the single descriptor
model.

hC LT P = h RC LT P ∪ hFC LT P (12)

V. THE APPLICATION OF CLTP IN

ANTI-COUNTERFEITING PATTERN IDENTIFICATION

To improve the identification of textures and increase
the details for anti-counterfeiting, we designed a type of
anti-counterfeiting pattern with a large number of fine and
dense random textures according to the randomness of
printer ink diffusion on paper. The pattern is a binary
anti-counterfeiting pattern with a random fine texture that
is generated using a random generation function and fractal
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Fig. 4. Eigenvalues corresponding to the LBP, BGC1, BGC2, BGC3, LTP and CLTP operators in the three sub images.

Fig. 5. Two independent channels corresponding to the ternary pattern of the CLTP descriptor.

interpolation method. The shape of the pattern is composed of
arbitrary curved thin lines or dots. Each anti-counterfeiting
pattern is different and unique with the feature of one
object corresponding to one code, thereby increasing the
forgery costs to the greatest extent and ensuring the relia-
bility of one-to-one anti-counterfeiting pattern identification.
The anti-counterfeiting pattern can be combined with other
identification maps simultaneously, as shown in Fig.6. Three
concepts are explained as follows for better understanding:
anti-counterfeiting pattern is generated by a computer and is
copied or printed by printer. Anti-counterfeiting image is the
image of the anti-counterfeiting pattern which is collected by
a camera. The anti-counterfeiting key area is the area with
high anti-counterfeiting performance in the anti-counterfeiting
pattern.

A. Alignment of Anti-Counterfeiting Image

The matching algorithm [29], [30] is used for preprocessing
before the identification of the anti-counterfeiting pattern,

Fig. 6. Anti-counterfeiting pattern and combination anti-counterfeiting
patterns. Image a is the original anti-counterfeiting pattern, image b is the
anti-counterfeiting pattern in a QR code, and image c is the anti-counterfeiting
pattern in a label icon.

and the inspected anti-counterfeiting image is registered and
corrected to ensure that the sample image is aligned with the
inspected image.

This paper uses the feature matching method to align the
anti-counterfeiting images. First, we extract the OBR feature
points of the sample image and the inspected image, then
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Fig. 7. Anti-counterfeiting image matching process. Image a is the initial
match, image b is the matching result after eliminating mismatches, and image
c is the positioning result of anti-counterfeiting image.

Fig. 8. Contrast map of the difference area between the sample image and
the inspected image.

match and filtrate the features in two images using the Brute
Force algorithm and FUGC’s [29] local linear transformation
and obtain the perspective transformation matrix (homographic
matrix) to correct the inspected image. Because the acquisition
program of the mobile terminal will carry out preliminary
alignment of acquisition frame to ensure there will not produce
large geometric distortion of the anti-counterfeiting image in
the acquisition frame, thereby ensuring the consistency of
registration. As shown in Fig.7:

B. Extraction of Anti-Counterfeiting Key Point Area

Not all areas in the anti-counterfeiting pattern have high
anti-counterfeiting performance. For high-precision forgery
technology, the local areas with high anti-counterfeiting per-
formance are more important for anti-counterfeiting than
other areas, as shown in Fig.8. The areas with high
anti-counterfeiting performance are usually corner points,
inflection points or small graphic areas with significant fea-
tures, which can remove a large amount of redundant infor-
mation in the anti-counterfeiting pattern and focus on the
geometric features of the important key areas of the anti-
counterfeiting pattern. We use the SUSAN algorithm [31] with
a fast calculation speed and strong antinoise ability for the
extraction of key points.

After the SUSAN corner points are extracted, a rectangular
area with radius R is constructed based on each corner point
as the center for subsequent texture feature extraction (In this
paper, R=4). The area extraction steps of anti-counterfeiting
key points are shown in Fig.8.

C. Similarity Measurement Based on Distance
Transformation

The CLTP is used to conduct feature extraction for
each anti-counterfeiting key area image in the given anti-
counterfeiting pattern, and the RCLTP and FCLTP are
extracted from each pixel in each area image. Then, the

Fig. 9. Area extraction steps of anti-counterfeiting key points.

probability distribution is represented by establishing the sta-
tistical histogram of the RCLTP and FCLTP feature images.
The histogram h RC LT P (ζ ) and hFC LT P (ζ ) are calculated as
follows:

h RC LT P (ζ ) =
L∑

j=0

δ( fRC LT P ( j), ζ ) (13)

hFC LT P (ζ ) =
L∑

j=0

δ( fFC LT P ( j), ζ ) (14)

where ζ ∈ [0, Nbin ],Nbin = 28 − 1 is the number of
histogram elements, and L is the number of pixels in an
anti-counterfeiting key area image. The function δ(.) is defined
as follows:

δ(x, y) =
{

1 x = y

0 x 	= y
(15)

The similarity between the statistical histogram of
the inspected anti-counterfeiting image and the sample
anti-counterfeiting image is calculated by the L2 norm dis-
tance. Then, the distance formula of an anti-counterfeiting key
area image is as follows:

dR

(
h1

RC LT P , h2
RC LT P

)
=

√√√√Nbin∑
i=0

(
h1

RC LT P(i)−h2
RC LT P (i)

)2

(16)

dF

(
h1

FC LT P , h2
FC LT P

)
=

√√√√Nbin∑
i=0

(
h1

FC LT P(i)−h2
FC LT P (i)

)2

(17)

where h1
RC LT P and h1

FC LT P are the key area image statis-
tical histograms of the inspected anti-counterfeiting pattern,
h2

RC LT P and h2
FC LT P are the key area image statistical his-

tograms of the sample anti-counterfeiting pattern.
Finally, the distances dR and dF of all anti-counterfeiting

key area images are combined to form the distance feature
vector vdR and vdF , and the distance scores of the RCLTP
and FCLTP features are fused by using simple union rules.

vdR = [dR(1), dR(2), · · · , dR(K )] (18)

vdF = [dF (1), dF (2), · · · , dF (K )] (19)

[vdR, vdF ] = [dR(1), dR(2), · · · , dR(K ),
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dF (1), dF (2), · · · , dF (K )] (20)

where K is the number of anti-counterfeiting key areas in an
anti-counterfeiting pattern.

Fig.10 demonstrates the overall flowchart of the proposed
method that combines the advantages of the LBP, BGC1
and LTP operators to construct robust and informative CLTP
texture features, improving the degree of recognition despite
complex environmental impacts and small differences. Fur-
thermore, the preprocessing steps of key point area extraction
are used to quickly locate possible texture difference areas,
greatly improving the real-time performance and robustness of
the algorithm. These factors contribute to the overall system
performance and robustness.

For intuitive judgment, we usually normalize the statistical
histograms h RC LT P(ζ ) and hFC LT P(ζ ), and then the dis-
tances dR and dF are binarized by the threshold function.

dR(i) =
{

1 dR(i) > σ

0 dR(i) ≤ σ
i = 1 · · · K (21)

dF (i) =
{

1 dF (i) > σ

0 dF (i) ≤ σ
i = 1 · · · K (22)

where σ is the threshold value. When the distance is greater
than σ , the region is considered dissimilar, otherwise it is
similar. σ can be tested by selecting part of data sets to obtain
the best classification threshold. In this paper, σ = 0.32.

Finally, we use the threshold function to judge the distance
score [vdR, vdF ] of RCLTP and DCLTP features:

result =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

(
K∑

i=0

(dF (i)+ dR(i))

)
/2K < μ

0

(
K∑

i=0

(dF (i)+ dR(i))

)
/2K ≥ μ

(23)

where μ is the threshold value. When the distance score is
smaller than μ, it indicates that the number of dissimilar areas
meets the requirements and is genuine. Otherwise, it is forged.
μ can be tested by selecting part of data sets to obtain the best
classification threshold. In this paper, μ = 0.09.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we will introduce the experiments used to
verify the proposed method. The experiments are conducted
on a newly created dataset on which all presented methods are
tested and evaluated.

A. Data Sets and Experimental Settings

The parameters of the algorithm are consistent throughout
the experimental process used to verify the performance of
the algorithm designed in this paper. These experiments were
carried out on a laptop with a 1.8 GHz i7 Intel Core CPU, 16
GB of memory and the Windows 10 operating system with
the MATLAB R2016a program installed.

At present, there are few one-to-one anti-counterfeiting
research literatures [22], so we use our self-built anti-
counterfeiting pattern data set in the early stage [2]. First,

TABLE II

THE PRINTERS USED IN THE EXPERIMENT

TABLE III

THE MOBILE PHONES USED IN THE EXPERIMENT

we use the inkjet printing equipment of the system to print
the 20 different samples of anti-counterfeiting patterns and
use camera to collect the sample images of the 20 differ-
ent samples of anti-counterfeiting patterns, then use 10 dif-
ferent brands of laser/inkjet copy printers(see Table II) to
print or copy these anti-counterfeiting samples as forged
anti-counterfeiting patterns. So there are 20 groups of anti-
counterfeiting patterns, and each group has 1 sample of real
anti-counterfeiting pattern and 10 forged anti-counterfeiting
patterns. Finally, 10 different brands of mobile phones(see
Table III) were used to take photos of 20 groups of anti-
counterfeiting pattern. Therefore, the data set consists of
20 groups of data, each of which has 1 sample image, 10 real
anti-counterfeiting images and 100 forged anti-counterfeiting
images.

B. Experimental Results

This paper tests and compares the CLTP with the most com-
monly used and most advanced texture features of the GLCM,
WDT, LBP, BGC1, LTP, LBPcoHDLBP [32], MRELBP [33],
RALBGC [34] to verify the precision of the abovemen-
tioned anti-counterfeiting pattern identification method based
on CLTP texture features. At the same time, we add the sta-
tistical difference in key image regions algorithm(SDKR) [2]
based on structural difference in our previous research. This
paper utilizes the same preprocessing to ensure the fairness
of the evaluation of the texture descriptors, namely, anti-
counterfeiting pattern registration. This obtains the corrected
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Fig. 10. Flowchart of anti-counterfeiting pattern identification based on CLTP texture features.

TABLE IV

PERFORMANCE COMPARISON

image of the anti-counterfeiting pattern, and the size is nor-
malized to 256 × 256. In addition, the key point areas of
the anti-counterfeiting pattern are extracted(except for SDKR),
and the similarity is determined by the L2 norm distance. The
performance of the texture descriptors is evaluated using three
aspects: the precision and recall rate, the stability and the time
consumption.

1) Precision Rate and Recall Rate: A simple threshold
method is directly used for authenticity identification after
the calculation of the similarity. The precision should be as
high as possible to ensure that the forged anti-counterfeiting
pattern is not judged as a real anti-counterfeiting pattern in

TABLE V

U-VALUE COMPARISON

actual use. Table IV summarizes the results of the experiment
comparing different texture features and preprocessing using
the average precision and recall rates of all data sets. Since
forged products are generally not allowed to be judged as
real in practical applications, we try to control the Precision
rate at 100%. The table shows that in terms of precision and
recall rate, in the ranking of the test descriptors, the best
method is the CLTP with a 100% average precision and a
99% recall rate, which are better than those of other texture
features.

The F1-measure are defined as follows:
F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall)

(24)
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Fig. 11. Scatter diagram of the difference values(the entire image).

2) Stability: In the anti-counterfeiting pattern identification
process, it is usually expected that the more similar the real
anti-counterfeiting image is to the sample image, the greater
the differences from the forged anti-counterfeiting images.
Therefore, the stability of texture features can be judged by
the difference between the similarity distance of the real
anti-counterfeiting image and the forged anti-counterfeiting
image. To more comprehensively reflect the stability of the
features, we separately count the distance differences from
the global image and local key areas. Because the key areas
extraction method of SDKR is different from other algorithms,
it can not be effectively compared, so fig.11 depicts the nor-
malized similarity average distances of the 9 texture features
in the entire image dataset in the form of a scatter plot.
The asterisk in the figure is the forged anti-counterfeiting
pattern, and the real point is the real anti-counterfeiting
pattern. The y-coordinate is the normalized number of dif-
ferent anti-counterfeiting key areas in each image, and the
x-coordinate is the inspected image sequence. The same color

curve is the same group of image data (including real and
forged), and each curve is sorted from small to large according
to difference value. Due to the excessive amount of test data,
we list the test results of 10 sets of data. Fig.12 depicts
the normalized similarity average distances of the 9 texture
features in all anti-counterfeiting key areas, where y coordinate
is the normalized difference distance of the feature value of
each anti-counterfeiting key area, and the x-coordinate is the
anti-counterfeiting key areas sequence of the all inspected
images. The same color curve is the all key areas of the same
group of image data (including real and forged), and each
curve is sorted from small to large according to difference
value.

Generally, the larger the mean difference between two types
of data, the easier it is to distinguish the data; and the smaller
the data variance is, the smaller the volatility, and the less
likely it is that a pattern will be misjudged. Therefore, a mea-
surable method is needed to judge the stability of each texture
feature algorithm. The Mann-Whitney U test is a statistical
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Fig. 12. Scatter diagram of the difference values(the anti-counterfeiting key areas).

Fig. 13. Running time of each texture feature.

method based on variable ranking without samples conforming
to a normal distribution or sample variance alignment. This
nonparametric hypothesis test method can assess whether
there is a significant difference between two observations.
Table V demonstrates the similarity average distances on all

data of 9 kinds of texture features in anti-counterfeiting key
areas. The test statistics for the similarity distance results
of the real anti-counterfeiting image and that of the forged
anti-counterfeiting image are calculated by the Mann-Whitney
U test. Generally, the larger the U value is, the greater the
mean difference and the smaller the variance. It can be seen
from the results that the CLTP descriptor proposed in this
paper is obviously the best method to execute to obtain the
maximum difference with the best performance stability.

U = |u1 − u2|√
σ 2

1
n + σ 2

2
n

(25)

where u1 and u2 are the mean values of the real and forged
anti-counterfeiting images, σ1 and σ2 are the standard devia-
tions of the real and forged anti-counterfeiting images.

3) Running Time: Fig.13 displays the running time (in sec-
onds) of each texture feature, including the feature extraction
and similarity calculation times of all anti-counterfeiting key
areas in the experiment. It can be seen that although the
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CLTP method takes 1.67 more time than the traditional LBP,
the extra time consumed is worthwhile due to the greatly
improved precision rate. Therefore, the CLTP in this paper can
greatly improve the precision and stability of texture feature
performance at the expense of certain running time and better
satisfy the actual needs of anti-counterfeiting identification.

VII. CONCLUSION

A new texture feature for anti-counterfeiting identification is
proposed in this paper. The prominent feature of the descriptor
is a coding and recombination strategy. It redefines the CLTP
coding strategy by using the relationship between the center
and neighborhood and redefines the recombination strategy by
using the structural form of the element gradient. Therefore,
the ability of the CLTP to identify the details of inkjet
printing random features for anti-counterfeiting identification
is improved. We test the performance of the CLTP through a
series of extensive experiments on an anti-counterfeiting label
data set, and the results prove that the CLTP is superior to the
latest descriptors on these data set, ensuring the credibility,
stability and discrimination of anti-counterfeiting identifica-
tion. Although it consumes more time than the traditional
LBP, it still can satisfy the real-time requirements of practical
applications.

Further work may include increasing the coding content
and optimizing various parameters related to the method
(such as using area blocking and other distance measures)
to further enhance the performance of the proposed CLTP
in anti-counterfeiting identification scenarios. We can also
explore the performance of the CLTP in other recognition
scenarios.
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