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Abstract
Purpose – The welding areas of the workpiece must be consistent with high precision to ensure the welding success during the welding of
automobile parts. The purpose of this paper is to design an automatic high-precision locating and grasping system for robotic arm guided by 2D
monocular vision to meet the requirements of automatic operation and high-precision welding.
Design/methodology/approach – A nonlinear multi-parallel surface calibration method based on adaptive k-segment master curve algorithm is
proposed, which improves the efficiency of the traditional single camera calibration algorithm and accuracy of calibration. At the same time, the
multi-dimension feature of target based on k-mean clustering constraint is proposed to improve the robustness and precision of registration.
Findings – A method of automatic locating and grasping based on 2D monocular vision is provided for robot arm, which includes camera calibration
method and target locating method.
Practical implications – The system has been integrated into the welding robot of an automobile company in China.
Originality/value – A method of automatic locating and grasping based on 2D monocular vision is proposed, which makes the robot arm have
automatic grasping function, and improves the efficiency and precision of automatic grasp of robot arm.

Keywords Multidimensional feature registration (ADK), Pars grapping, Self-adaptive, K-segment master curve

Paper type Research paper

1. Introduction

With the development of science and technology, robotic arms are
finding increasingly wider application in industrial production,
including aerospace, automobile manufacturing, the petrochemical
industry, public security and other fields. Yet, traditional robotic
arms can only move according to a planned trajectory and cannot
obtain outside information, which limits the range of application.
To enhance the flexibility of robotic arms, control technologies for
robots using visual information obtained from cameras have also
beendeveloped in the past fewdecades.
Usually, this grasping task is called the “bin-picking”

problem, and because of its extensive influence on the flexibility
and productivity in manufacturing enterprises, it has been
widely studied over the past 10 years.
Currently, many bin-picking systems use 3D sensors.

Although these systems can completely show the 3D
information on theworkpiece, they still have some limitations:
� The cost of such 3D industrial sensors is still about three

to four times as high as the traditional 2D industrial
cameras with high resolution.

� Such systems usually require expensive devices to move
the scanning head to be able to scan an entire container.

� For the detection of a very thin plane workpiece, such a
piece is usually t is usually disposed in smooth hills,
imposing a high precision in depth estimation which
requires very expensive sensors and usually limits the
active search area along the z-axis to a few centimeters.

Our solution provides a reliable, lower cost and less invasive
system using a 2D industrial camera for installation in existing
robotic cells, as shown in Figure 1. The thickness of the target
can be from 0.5 mm to tens of centimeters. Compared with
using expensive industrial 3D cameras, or laser triangulation
systems, the choice of a single industrial 2D camera solution
makes our systemmuch cheaper andmore convenient.
Aimed at the requirements of a multi-objective automatic

grasping system in robotic arms, we put forward an automatic
grasping system for industrial workpiece based on the monocular
vision of a machine vision system. Our recognition and
localization strategy is successful thanks to an improved and
highly engineered calibration and matching algorithm. We adopt
the self-adaptive k-segment master curve algorithm to do
nonlinear parallel multi-plane calibration, thereby improving the
efficiency of the traditional calibration algorithm of a monocular
camera and meanwhile increasing the accuracy of calibration. In
image registration, we propose the adaptive multi-dimension
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feature in k-mean clustering (ADK) algorithm to perform
registration for target multi-dimensional features using clustering
constraints based on k-means, so that the robustness of the
registration and grasping precision is greatly increased.

2. Related work

Despite their long history, the use of vision sensors for object
detection and pose estimation in industrial robotics applications
is still an active research area.
Huang et al. (2013) involve a point cloud through color and

depth information collected by Kinect and realize the target
object recognition through the point cloud segmentation.
Papazov et al. (2012) use the depth images from Microsoft
Kinect sensors to find targets, and then make the robot do bin-
picking. They put forward a method comparing the mutual
match between the scene point cloud and the object model to
perform detection and estimate the posture. Bley et al. (2006) put
forward another grasping method for point cloud data by
studying generic object models. Buchholz et al. (2010) present an
industrial bin-picking system based on a RANSAC-like (random
sample consensus) approach to match a 3D point cloud of the
workpieces against the CADmodel of the searched objects: pose
hypotheses are generated collecting a subset of matches between
pairs of oriented points in the model and the 3D data, and the
matching quality is given by the amount of contact between the
surfaces. Skotheim et al. (2012) also propose a vote scheme based
on the directional point pairs in a 3D point cloud. They install a
laser triangulation sensor on the robot wrist, so it can directly
scan the objects from every direction. Botterill et al. (2016)
present a grasping scheme based on binocular vision, which uses

the double camera or Kinect’s depth camera to acquire the
target’s depth point cloud images, and then the method does the
target localization and grasping by point cloud registration.
Collewet and Chaumette (2002) advance a 2.5D visual servo,

which overcomes the servo limitation stemming from its
positions and images.Weiss et al. (1985) raise the image Jacobian
matrix, without depending on camera calibration or any
geometric models, bymeans of the deviation between the current
image and the specified image and the nonlinear relationships
between the robotic movements. Holz et al. (2015) propose a
system for depalletizing and a complete pipeline for detecting and
localizing objects. Their approach is based on multi-resolution
surfel models and allows for low cycle times. Nieuwenhuisen
et al. (2013) extend global navigation techniques by precise local
alignment with a transport box. Objects are detected in range
images using a shape primitive based approach.
Tian (2009) put forward a grasping scheme based on

monocular vision, which finds the target position by image
registration, and then guides the grasping directly using a simplex
camera. Pretto et al. (2013) use a monocular vision system in a
bin-picking scenario to search the targets with grayscale. The
method is based on contour matching of the scene and the target
model. They report cycle times of up to 7 s in a statically
mounted robot setup. Rahardja and Kosaka (1996) offer a bin-
picking system based on stereoscopic vision, where a feature
model is chosen by the operator, then the objects being searched
for are located roughly, and then other features are found which
are commonly small and helpful in eliminating errors and
improving localization accuracy. C¨ozar et al. (2001) present the
generalized Hough transform (GHT), which is used for 3D
localization of planar objects, and the computational complexity
of theGHT is reduced by uncoupling the parameter detection.

3. System overview

The automatic grasping system in industrial robotic arms
usually consists of the mechanical arm, conveyor belt, light
source and visual system. The visual system is composed of the
visual sensors andmaster control computer.

3.1 System architecture
Because of the higher accuracy requirements for processing
parts in industry, in the system, we selected a single-eye color
CCD industrial camera with a Basler Ethernet interface as our
visual sensor, the resolution of which is 2,448 � 2,050, while
the actual filming area is 60� 50 cm.
An LED linear illuminator is used as the light source with a

concentrated effect, where the high brightness can shorten the
camera exposure time, and at the same time, the light source is
stable, thus affording continuous invariance for continuous
visual detection.
The conveyor belt is a black rubber belt with high-strength

chemical fiber canvas as the basement layer and superior
quality rubber as the outer layer and rough surface. This
conveyor belt has strength, elasticity, durability and resistance
to impact, aging and groove characteristics, so it provides a
background with high morphological stability and anti-glare
characteristics in the vision system.
The robotic arm is an IRB1600 robot from ABB, and it has

excellent repeatable localization (60.05 mm) precision and

Figure 1 The hardware configurations of our system
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trajectory accuracy. At the same time, it adopts an integrated
design and, all cables and flexible tubes are embedded in the
robot’s upper arm, which is a good choice in arc-welding
applications, and the wire and cable contain the dielectric
medium for arc welding, including the power supply, solder
wire, shielding gas and compressed air.

3.2Workflow
The robotic arm-grasping device, which is designed based on
an industrial camera and computer vision system, is shown in
Figure 2.
The device consists of the robotic arm, conveyor belt, light

source, industrial camera, laser sensor, industrial personal
computer and so on, which is placed in an indoor environment
to avoid any influence on the test results caused by strong
external light changes. The double LED light sources and
monocular industrial camera are installed right above the
conveyor belt, and are in a position relatively parallel to the
conveyor belt. This helps optimize the LED light source
localization to minimize changes in light and provides the best
lighting for workpiece imaging and ensures that the imaging is
directed toward the conveyor belt. The industrial camera links
with the IPC are through a Gigabit Ethernet port. When the
workpiece move to the laser sensor on the conveyor belt, the
conveyor belt stops. Meanwhile, the camera triggers a photo
and sends the photo image to the industrial control computer.
The IPC calculates the displacement distance and rotation
angle using the computer vision algorithm, and then delivers it
to the robotic arm. Then, the robotic armmoves and grasps the
workpiece on the conveyor belt according to the displacement
distances and rotation angles. To improve the workpiece
localization accuracy, there is a circular location hole where the
grasped workpiece is fastened to the welding groove to confirm
the localization accuracy. The workflow diagram of this system
is shown in Figure 3.

4. Approach

4.1 Nonlinear parallel plane calibration algorithm for
the camera
The camera is an important sensor in machine vision, as the
camera parameters have an effect on the target recognition and
positional accuracy. Camera calibration involves finding out

the camera’s interior and exterior parameters. The interior
parameters mainly refer to the camera’s own hardware
parameters, such as the camera lens distortion, focal length and
the installation position of the imaging chip in the
manufacturing process. The exterior parameters mainly refer to
the parameters in the World Coordinate System, such as the
camera’s position and rotational direction, etc.
We chose a single sensor, whereby the complexity of the

server information captured by the single sensor is much lower,
and the calculation is smaller, but we cannot get the target
depth information directly. Considering that the grasping
height for each workpiece is the same, we could establish
parallel planes of all heights that are parallel to the conveyor
belt, and take the points on each parallel plane to carry out the
calibration, as shown in Figure 4. Yet, a parallel plane is
endless, if all parallel planes are to be used in the calibration,
and there are no possibilities to do these calibrations; however,
if we select the parallel planes for calibration within a certain
interval, there will be considerable error when the height
interval is too big. At the same time, a farther distance from the
center will lead to a greater error. According to the pinhole
imaging principle, the farther the distance from the center, the
larger the tilt angle and the greater the drift errors caused by the
height difference, as shown in Figure 5. Yet, if the height
interval is too small, the amount of calculation is too big and
doing this is time-consuming, which causes the operability to

Figure 2 The structural diagram for the robotic arm grasping device

Figure 3 The workflow diagram of the robotic arm grasping system
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diminish. Therefore, we propose a nonlinear parallel plane
calibration algorithm.
There are 2,448� 2,050 pixels in the whole image plane, and

we take the middle region of the plane to be divided into 13
rows and 15 columns, 208 points in total, and then move the
robotic arm along the location of these 208 points successively,
and at the same time record the corresponding World
Coordinates, as shown in Figure 6. Here, the conveyor belt is
regarded as the initial plane with zero height, because the height
at which the workpiece is put on the conveyor belt is commonly
2 to 50 mm. We chose a parallel plane every 5 mm in height,
recording the corresponding image coordinates of the 208
World Coordinate points at the given height, so that there are
10 parallel planes in total. Since there is 5 mm height between
each parallel plane, we adopt the self-adaptive k-segment
master curve algorithm to fit the corresponding image
coordinates of the 208 World Coordinate points of each height
plane.
The master curve is the nonlinear generalization of the first

principal component. To emphasize finding the smooth curves
that are through the “intermediate” of the data distribution,
these curves give an overview of the data (Hastie, 1984).
Krzyzak and Kegl (1999) thought that certain constraints
needed to be attached to some of the curve clusters, and finding
the cluster could minimize the distance function. Based on this
thought, they gave the definition ofK principal curves.
Regarding the data point set X, the curve f* is known as the

master curve of the length L, and if it is on the curve clusters,
where all lengths are less than or equal to L, f* minimizes the
distance function:

Df ¼ E D X; fð Þ½ � ¼ E infl jjX; f xð Þ jj2
h i

¼ E jjX � f l f Xð Þ� � jj2
h i

(1)

We will take theWorld Coordinates of the 208 points in the ten
parallel planes as the 208 sample sets:

Figure 4 Parallel plane calibration diagram

Figure 5 Calibration error caused by using the calibrated parallel plane
to derive

Figure 6 Robotic arm calibration lattice diagram, where the red dots
mean 208 points
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Xi ¼ pi1; pi2; � � � ; pi10f g � Rd i ¼ 1;2; � � � ; 208ð Þ (2)

Looking for the function fi tomake the:

1
10

X10
j¼1

D pij ; fið Þ (3)

Valueminimum.
First, we work out the shortest first principal component line

by using the known World Coordinates of the ten parallel
planes, and use the line as the initial curvefi1. Let us suppose
that f is the polygonal line with vertexes like u1, u2,

. . ., uk11 and
segments such as s1, s2,

. . ., sk, where sk is connected uk and uk11,
and sample setXi is divided into the 2k1 1 different areas such
as s1, s2,

. . ., sk and u1, u2,
. . ., uk11. The definition of these

vertexes and segments are defined as below:
For any P�Rd, set:

D p; sjð Þ ¼ kp� sjk2 (4)

D p; ujð Þ ¼ kp� ujk2 (5)

In the form:

Uj ¼ P 2 Xi : D p; ujð Þ ¼ D p; fð Þ;D p; ujð Þ < D p; umð Þ;�

m ¼ 1; � � � j � 1g (6)

Sj ¼ P 2 Xi : D p; sjð Þ ¼ D p; fð Þ;D p; sjð Þ < D p; smð Þ;�

m ¼ 1; � � � j � 1g (7)

For each vertex, find uj0 by fixing the rest of the vertexes to make
the distance functions Gj(f)minimum:

Gi fð Þ ¼X
p2Sj

D p; sjð Þ1
X
p2Uj

D p; ujð Þ ; i ¼ 1

X
p2Sj�1

D p; sj�1ð Þ1
X
p2Uj

D x; ujð Þ1
X
p2Sj

D p; sjð Þ

; 1 < i < k11X
p2Sj�1

D p; sj�1ð Þ1
X
p2Uj

D p; ujð Þ ; i ¼ k1 1

8>>>>>>>>>><
>>>>>>>>>>:

(8)

Then we select the longest line with the most projection points
to make the midpoint of the line be the new vertex. To achieve
better robustness, k must be sensitive to the mean square
distance, and it stops when the number of line segments k is
approximately 101/3 and is convergent to the expected square
distance at o(101/3) speed. Thus, we calculate the image
coordinates of the 208 points in every parallel plane, as shown
in Figure 7.
Through the 208 World Coordinates and the corresponding

image coordinates in any of the height planes, we calibrate the
camera through the mature and stable calibration algorithm of
Zhang (2000) and find the interior parameters and the
corresponding height exterior parameters of the camera.

4.2 Target multidimensional registration algorithm
Grasping objects is the most basic ability of a robotic arm, and
the level of the ability is an important basis for evaluating a
robot’s degree of intelligence. The primary task in completely
grasping an object is target registration, and feature matching
has been widely applied in target registration (Ma et al., 2018,
2017), so we adopt the method of feature point matching for
image registration, and the feature points can be sift, surf and so
on.We chose the OBRwith a faster speed (Rublee et al., 2011).
First, we extract the OBR feature points of the two images
being registered, then match and filtrate the features in two
images using the ADK algorithm and get the perspective
transformationmatrix (homographicmatrix).
OBR detects the feature points with the FAST algorithm.

This definition is based on the image’s gray values for the
surrounding feature points and detecting the pixel values of
the candidate feature points in a surrounding circle. If there are
enough pixels around the candidate point whose gray values are
sufficiently different from the candidate point, it is argued that
the candidate point is regarded as a feature point, subject to the
following formula:

N ¼
X

x8 circle pð Þð Þ

����I xð Þ � I pð Þ
���� > «d (9)

where I(x) is the gray of any point in the circumference, I (p)
means the gray of the center and «d is the threshold of the gray
value difference. If N is greater than the given threshold which
generally is three-quarters of the circle points surrounding, p is
regarded as a feature point. For obtaining results faster and
improving the efficiency of the comparison, we adopt FAST-9,
as shown in Figure 8.
We match the OBR feature points coarsely using the Flann

algorithm (Muja and Lowe, 2009), whose feature space is
commonly n real vector spaceRn, and the core of that algorithm
is to find the neighbors of the instance points using Euclidean
distance. The eigenvectors of the feature points p and q are

Figure 7 The fitting diagram of a calibration point in different height
planes using the master curve algorithm
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represented as Dp and Dq, so the Euclidean distance of d(p,q)
can be indicated as in the following formula 10:

d p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dp �Dqð Þ Dp �Dqð ÞT

q
(10)

We find the initial matching point pair(m1i,m2i) with a
minimum distanceD in the image I2 of the feature points in the
image I1 through the Flann algorithm and then calculate
the minimum distance min D according to the distances of all
the matching point pairs, setting the threshold T = u�min D
(here, we let m = 5). If the minimum distance of the matching
point pair D < T, m2 will be like the candidate matching point
ofm1, otherwise, do the next feature point matching of image I1
and eliminate the point m1i, and finally get the Flann matching
point pairs from image I1 to image I2. Do the same for the
feature points in image I2, and get the Flann matching point
pairs from image I2 to image I1. Then judge these two Flann
matching point pairs, removing the asymmetry matching point-
pairs, so as to get an initial matching set.
Coarse matching in the Flann algorithm will have many false

matching points, which has an influence on the matching
accuracy to a large extent. Therefore, mismatch removal
algorithm is particularly important (Ma et al., 2014, 2013), and
we do the validated matching with the ADK algorithm,
eliminating error matching point pairs. Before using the ADK
algorithm, we preprocess making use of the PROSAC
algorithm (Brandt, 2008). The PROSAC algorithm sorts the

individuals according to the similarity level of the figure
matching point pairs first and considers that the samples with
high similarity are more likely to be the interior point of the
correct model, then determines the model parameters based on
the data for the interior points.
The PROSAC algorithm can eliminate many false matching

points, but will still retain some false matching points with small
distance differences from the Figure above. These false matching
points will have an effect on the accuracy of the final perspective
transformation matrix. If these false matching points map to the
corresponding figure spaces, such as the distance feature vector
and the direction feature vector between the false matching
points, we could find that there is no obvious distribution
regularity in the false matching points. However, the correct
matching point distributions are relatively concentrated and have
local similarity transformation consistency, as shown in Figure 9
and are suitable for removing the false matching points using the
k-means clustering algorithm. Thus, we put forward two new
feature vectors, i.e. the distance difference feature vector and the
angle difference feature vector, at the same time, and consider
using the k-means clustering method based on the disparity
constraint to remove the false matching points through the
multidimensional feature vectors.
After filtrating with the PROSAC algorithm, the foremost

matching point (m11, m21) has the greatest credibility, so we
choose this matching point as a reference point and then
calculate the distance difference feature vector D and the angle
difference feature vector u of all matching points set H, as
shown in Figure 10:
The distance difference feature vectorD is below:

D ¼ d1k � d2kf g (11)

where dik is the distance between the matching point and the
reference point.

dik ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xmik � xmi1ð Þ2 1 ymik � ymi1ð Þ2

q
; k 6¼ 1;mik � H; i ¼ 1;2

(12)

The angle difference feature vector u is below:
u ¼ u 1k � u 2kf g (13)

Figure 8 Application of the FAST-9 algorithm to an artifact image

Figure 9 The relative consistency of the correct matching points in the
local region
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where u ik is the angle between the matching point and the
reference point.

u ik ¼ atan
ymik � ymi1

xmik � xmi1

;

k 6¼ 1;mik � H; i ¼ 1;2
(14)

The k-means clustering algorithm is used to cluster the distance
difference feature vector D and the angle difference feature
vector u between the sample and the figures being detected
because the initial clustering center selection and the number of
categories has a strong influence on the k-means clustering

algorithm (Wang and Zhao, 2010). We observe that the
distance feature vectors of the correct matching points are
similar according to the feature point matching. If the distances
of thematching point pairs are indicated by Euclidean distance,
the distance differences are generally not more than five pixels,
and the direction feature vectors are also simultaneously very
similar. The angle difference generally is within 3°, so we take 5
pixels and 3°, respectively, as the classification boundaries,
which make them into a category where the distance difference
is less than 5 pixels or the direction difference is no more than
3°, until the aggregation cannot continue, and put the mean
values of each clustering category as the initial clustering
centers to cluster using the k-means algorithm.
The false matching rate of the matching point pairs

processed by the ADK algorithm could fall below 1 per cent, as
shown in Figure 11. Finally, we calculate the perspective
transformation matrix between image I1 and image I2 using
thesematching point pairs with higher precision.
Finally, the transformation matrix w is used to calculate the

image coordinates of the grabbing point. The formula is as
follows:

x ¼ x
0
=w

y ¼ y
0
=w

(15)

where (x0,y0) is the grabbing point of the template, and (x, y) is
the grabbing point of the target.

Figure 10 The distance difference and angle difference of the
matching points

Figure 11 The first col is the original angle differences and distance difference of the matching point pairs, and the second is the angle differences and
distance difference of the matching point pairs after elimination using the k-means algorithm
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After converting the camera coordinate system into the robot
coordinate system, the location of the target is compared with
the position of the template to find the deviation, which is
transmitted to the working robot as the position command.

5. Experimental results and analysis

5.1 Experimental platform
To verify our design for the robotic arm position and fetching
method, we designed a series of experiments to verify the
performance of the algorithm. In the process used in the
comparative experiments, the parameters of the algorithm are

consistent. These experiments were carried out on a notebook
with 2.4 GHz Intel core CPU and an 8 GB memory notebook,
and the open source toolbox opencv2.94 was used.
The data sets came from the seven different workpieces, with

1,000 of each workpiece being continuously tested. The image
size was 2,448 � 2,050. To get close to the actual operation of
the workpiece, we calculated the real error value through the
actual grasping of the robotic arm and defined the
corresponding test index: the camera calibration accuracy was
the AME of the measurement accuracy for some plane
calibration points, where the gripping accuracy refers to the
average distance and angle of the offset error for the grasping of

Figure 12 (a) Projection error with non-linear plane calibration method for h = 8mm and (b) projection error with adjacent plane calibration data
method for h = 8mm; (c) comparison of the two methods
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the robotic arm. At the same time, true positive was defined
such that the grasping error distance was less than 3 mm and
the grasping error angle was less than 2°, and the false positive
was defined as the opposite.

5.2 Experiment 1: camera calibration error analysis
We begin by calibrating the 5 mm height plane , and calibrate a
plane every 5 mm, so there are 10 planes in all. In the
experiments, we selected the 8 mm height plane to test, and
tested the camera’s interior and exterior parameters of the 8 mm
height plane by adopting the method for calibration plane data
nearby (for example, the 8 mm height plane adopts the
calibration data of the 10 mm height plane) and nonlinear
parallel plane calibration, then we obtained the test results of the
re-projection errors by comparing the real values, as shown in
Figure 12.

5.3 Experiment 2: target grasping error analysis
Next, we tested the same workpieces to do image matching
according to the different laying angles. Because the rotation
angles of the robotic arm are limited, we selected rotation
angles within 0° � 60° and �60° � 0° to test, as shown in
Figure 13. We compared each stage of the matching process,
with the columns showing the algorithm process, and at the
very start, we established the putative correspondence sets
using the Flann algorithm, and all the orb matches were

assumed to be inliers, as shown in the first column. To better
display the matching effect, we display the matching points
separately, as shown in the second column, where the head and
tail of each arrow correspond to the positions of a Flann match
in two images. The third column shows the matching results of
the PROSAC algorithm, and the mismatching point pairs show
a substantial reduction, but there is a small number of
mismatching point pairs with small deviation. The fourth
column shows that ADK almost converges to a nearly binary
decision on the match correctness. The final images matched
by our ADK are presented in the last column. From the results,
we see that our ADK is able to distinguish inliers from the
outliers on all pairs.
At the same time, we present a quantitative comparison of

the data sets using the ADK, RANSAC and PROSAC feature
matching algorithms. The comparative results are given in
Table I, where obviously, our algorithm has higher true
positives and relatively lower false positives compared with the
other two algorithms. Therefore, it is better suited for our grasp
planning approach.
Finally, we performed grasping experiments on the data sets

using the three kinds of algorithms and calculated the offset
distance and angle of the robot grasping points. Then we
obtained themean errors for each algorithm, and the results are
shown in Figure 14. From the results, it is easy to see that
PROSAC has better mean accuracy than the RANSAC

Figure 13 Matching results on several typical workpiece image pairs
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algorithm. This is because our application scenario is single,
and has less interference, so the probability that a feature with a
higher degree of matching is the interior point is much higher
than one where there is a lower degree of matching. The
matching performance of our ADK algorithm has better
accuracy and is more stable than the other two kinds of
algorithms.
Considering the test results above, the offset distance range

of this graspingmethod is between 0 and 0.5mm, and the angle
error range is from �0.2° to 0.2°, which illustrates that from
either the angle accuracy or the offset distance accuracy, our
grasping method is relatively better compared to a monocular
camera and can effectively realize the automatic grasping
function of a robotic arm. The stability of the system and
positional results canmeet the needs of practical production.

6. Conclusion

In this paper, we presented a robust, flexible, low-cost and
noninvasive smart-picking system that allows detection and

precise location of planar objects randomly placed on a
conveyor belt using only a single camera. We improve the
accuracy and efficiency of the traditional calibration algorithm
of a monocular camera by using a nonlinear parallel plane
algorithm and develop an ADK algorithm based on image
feature matching, ensuring that its robustness, stability and
grasping accuracy is greatly increased without costing much
time. The technology has been successfully applied to an
automobile part grasping and welding system on the FANUC
and ABB robots. In our next work, we will improve the self-
adaptive threshold for registration and registration efficiency,
and we will apply our algorithm to automatic image matching
with speed and high accuracy.
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